Course curriculum
The operation and maintenance of large scale production machine learning systems has uncovered new challenges which have required fundamentally different approaches to that of traditional software. The area of security in MLOps has seen a rise in attention as machine learning infrastructure expands to further critical usecases across industry. In this talk we introduce the conceptual and practical topics around MLSecOps that data science practitioners will be able to adopt or advocate for. We will also provide an intuition on key security challenges that arise in production machine learning systems as well as best practices and frameworks that can be adopted to help mitigate security risks in ML models, ML pipelines and ML services. We will cover a practical example showing how we can secure a machine learning model, and showcasing the security risks and best practices that can be adopted during the feature engineering, model training, model deployment and model monitoring stages of the machine learning lifecycle.
-
1
Security Operations for Machine Learning at Scale with MLSecOps
-
Security Operations for Machine Learning at Scale with MLSecOps
-
Instructor
Engineering Director, Machine Learning - Seldon
Alejandro Saucedo