Session Overview

Satellite imagery and machine learning can be used to estimate emissions from coal power plants across the world, and locate solar panels in the UK. Plentiful data, cloud compute, and open source tools means even small teams can do powerful things - in this talk we’ll go through the steps to setup a machine learning pipeline to analyse overhead imagery and discuss the results and lessons learnt.

For energy analysis, it is necessary to first deeply understand the distribution of the underlying infrastructure. Only then can the steps to create a representative and useful dataset be taken. There are many different imagery providers and datasets - the strengths and weaknesses of different data sources are discussed along with techniques to pre-process them.

Computer vision CNNs and transfer learning mean training a model on geospatial raster data in a pipeline is reasonably straightforward. This talk will go through the necessary steps for a generic task, and the code will be available.

Specific lessons learned from two projects, understanding coal power plant output from smoke plumes, and identifying solar PV from aerial imagery will be explained with particular emphasis on data science techniques used.

From an initial pilot, understanding the output of coal power plants based on visual band imagery of smoke plumes has led to a significant project supported by a Google AI Impact grant currently underway by WattTime and the Carbon Tracker Initiative.

Laurence is co-founder and CEO of Treebeard Technologies, a software company making tools for data scientists. He was previously a data scientist at Carbon Tracker, a financial think-tank and Sandbag, an NGO focused on carbon markets. He has a degree in physics from the University of Cambridge and an MSc in Energy Systems from UCL.


  • 1

    Tracking Coal and Solar Power with Machine Learning and Satellites

    • Abstract & Bio

    • Tracking Coal and Solar Power with Machine Learning and Satellites


Start your 7-days trial. Cancel anytime.