Day 1
Module 1: An overview of the
Matplotlib Figure and Axes
Training Overview
Matplotlib Figure and Axes objects
An object-oriented approach to Matplotlib
Seaborn as a “wrapper” for Matplotlib
Module 2: Introduction to Seaborn
Seaborn documentation and API
Integration with Pandas DataFrames
Main plotting parameters
Grid vs Axes plots
A different categorization for Seaborn plots
Module 3: Distribution Plots
Univariate distribution plots
Box plots
Changing the orientation of plots
Histograms and KDEs
Other distribution plots
Module 4: Automatic Grouping by Category
Plotting a continuous by a categorical variable
Grouping with two continuous variables
Splitting groups by setting hue
Day 2
Module 5: Grouping and Aggregating Plots
Univariate grouping and aggregating
Choosing the aggregation function
Bar, Point, Count, and Line plots
Module 6: Tidy Data
Definition of tidy data
Long data vs wide data
Seaborn automatically groups and aggregates
Manually grouping and aggregating with pandas
Module 7: Raw Data Plots
Scatterplots
Regression plots
Heatmaps
Module 8: Grid Plots
Relationship with Matplotlib Figures
Discovering the Grid plotting functions
Setting the plot with the kind parameter
Creating multiple Axes with row/col parameters
Bivariate distribution plots
Hierarchical cluster maps
Module 9: Seaborn Styles and Palettes
Run configuration parameters
Specific Seaborn styles
Color palettes and widgets