Live training with Dr. Jon Krohn is starting on July 29th at 12 PM (ET)
Training duration is 4 hours
Regular Price : $252.00.
10% discount ends soon.
REVIEWS
Thorough and well presented
Wendy Sanchez-Vaynshteyn
Jon did an excellent delivery of such a complex topic and gave a thorough, non boring, presentation within such a discreet time. He have a presentation cover...
Read MoreJon did an excellent delivery of such a complex topic and gave a thorough, non boring, presentation within such a discreet time. He have a presentation covering from the history of deep learning to actual execution of code to presenting helpful resources. It was a true pleasure to take this course. So much information was given that I need time to process all that wealth of information but feel confident I can with all the resources Jon provided. Thank you
Read LessFantastic session
Indi Matthew
The content was interesting, at just the right level of detail (not too over heads for people new to the topic but not so basic as to be a waste of time), an...
Read MoreThe content was interesting, at just the right level of detail (not too over heads for people new to the topic but not so basic as to be a waste of time), and engaging. I loved the style and flow of the course, with lots of visuals and examples to keep us engaged. This is the best workshop/training/presentation I have attended in a long time.
Read LessDeep Learning Training with Jon Krohn
Mark Smith
Enjoyed it. Smart, well managed training session. Jon has the academic background but is able to translate it into clear practical instruction.
Enjoyed it. Smart, well managed training session. Jon has the academic background but is able to translate it into clear practical instruction.
Read LessONLY A FEW SPOTS LEFT
WITH 4-DAY BOOTCAMP PASS GET THE FREE ACCESS TO THIS LIVE TRAINING
Instructor
Instructor Bio:
Chief Data Scientist, Author of Deep Learning Illustrated | untapt
Dr. Jon Krohn
What will you learn?
-
Understand the essential theory of artificial neural networks, including which deep learning approach is most appropriate for solving a given problem
-
Build production-ready deep neural networks with the NumPy-esque PyTorch library as well as with the heavyweight TensorFlow 2 library (by taking advantage of its in-built, easy-to-use Keras module)
-
Interpret the output of deep learning models to troubleshoot and improve results
Watch the message from Dr. Jon Krohn
Course Abstract
Relatively obscure a few short years ago, deep learning is ubiquitous today across data-driven applications as diverse as machine vision, natural language processing, artistic creativity, and complex sequential decision-making.
This deep learning primer brings the revolutionary approach behind contemporary artificial intelligence to life with interactive demos featuring TensorFlow 2 and PyTorch, the two leading deep learning libraries.
To facilitate an intuitive understanding of deep learning’s artificial-neural-network foundations, essential theory will be introduced visually and pragmatically. Paired with tips for overcoming common pitfalls and hands-on code run-throughs provided in Python Jupyter notebooks, this foundational knowledge empowers you to build powerful state-of-the-art deep neural network models. Many resources will be provided for digging further into any deep learning-related topic that piques your interest.
10 % Discount ends in:
-
00 Days
-
00 Hours
-
00 Minutes
-
00 Seconds
Course Schedule
Segment 1: The Unreasonable Effectiveness of Deep Learning (40 min)
Training Overview
A Brief History of the Rise of Deep Learning
Deep Learning vs Other Machine Learning Approaches
Dense Feedforward Networks
Convolutional Networks for Machine Vision
Recurrent Networks for Natural Language Processing and Time-Series Predictions
Deep Reinforcement Learning for Sequential Decision-Making
Generative Adversarial Networks for Creativity
Overview of the Leading Deep Learning Libraries, including TensorFlow 2, Keras, PyTorch, MXNet, CNTK, and Caffe
Segment 2: Essential Deep Learning Theory (80 min)
An Artificial Neural Network with Keras
The Essential Math of Artificial Neurons
The Essential Math of Neural Networks
Activation Functions
Cost Functions, including Cross-Entropy
Stochastic Gradient Descent
Backpropagation
Mini-Batches
Learning Rate
Fancy Optimizers (e.g., Adam, Nadam)
Glorot/He Weight Initialization
Dense Layers
Softmax Layers
Dropout
Data Augmentation
TensorFlow Playground: Visualizing a Deep Net in Action
Segment 3: TensorFlow 2 and PyTorch (90 min)
Revisiting our Shallow Neural Network
Deep Neural Nets in TensorFlow 2
Deep Neural Nets in PyTorch
Tuning Model Hyperparameters
Creating Your Own Deep Learning Project
What to Study Next, Depending on Your Interests
10 % Discount ends in:
-
00 Days
-
00 Hours
-
00 Minutes
-
00 Seconds
Who will be interested in this course?
-
Software developers, data scientists, analysts, statisticians and other data-related professionals are the core target audience for this training. Moreover, this training is for anyone:
-
Who would like to be exposed to the range of applications of deep learning approaches.
-
Who yearn to understand how deep learning works.
-
Who would like to create state-of-the-art machine-learning models well-suited to solving a broad range of problems, including complex, non-linear problems with large, high-dimensional data sets.
Which knowledge and skills you should have?
-
Some experience with machine learning would make this workshop easier to follow, but is by no means necessary.
-
All code demos during the training will be in Python, so experience with it or another object-oriented programming language would be helpful.
Have questions?
What is included in your ticket?
-
Access to live training and QA session with the Instructor
-
Certification of completion
Testimonials
Dr. Jon Krohn's previous students
Receive Deep Learning Illustrated signed by Jon Krohn